

Knowledge Transfer Network

Energy Generation & Supply

Together...

accelerating to a sustainable energy future

Energy Sector Overview
12 Nov 2009

Chris Bagley

KTN Network Manager

12 Nov 09

UK Energy Generation & Supply KTN

A dynamic network delivering strategic value to the UK energy sector

- accelerated innovation
- access to funding
- partnerships
- international engagement
- cross-sector links
- technology deployment

Priority EG&S Areas & Stakeholder Landscape

Offshore Wind

Wave & Tidal

Carbon Abatement Technologies

Large Power Stations

Fuel Cells & Hydrogen

Maximising Oil & Gas Resources

Future & Emerging Opportunities

- Utilities/Operators
- Equipment Suppliers
- Trade Associations
- Site owners/planners/EPCs
- Universities
- Research Institutes
- Investment Firms
- Certification Bodies
- Regulators
- Gov Funding Bodies
- RDAs/DAs
- Other KTNs

Why Wind Energy?

• Projects 254

• Turbines 2697

• MW 3905

• ~2.18 m homes

	Sheltered terrain ²		Open plain ³		At a sea coast ⁴		Open sea ⁵		Hills and ridges ⁶	
	$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	m s ⁻¹	Wm^{-2}	m s ⁻¹	Wm^{-2}	ms-1	Wm^{-2}
3580	> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800
	5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-1800
	4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200
	3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700
==	< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400

Why Offshore?

- Excellent wind resource
 - High mean figures
 - Low turbulence
 - Estimated 33% of 'useful' wind resource in Europe
 - In relatively shallow waters
- Reduced NIMBY effect
- Larger turbines possible

Wind Speed 10km offshore Height 100m

Round 3

- Development and delivery by 2020
- 9 Zones
- Single developer for each zone
- Government target of 25 GW additional offshore wind
- Around 5000 turbines
 - First site construction 2014
- Further ~10 GW planned and consented onshore
 - >2000 turbines

Condition Management issues

- Need to monitor and manage condition and output
- Current inspection methods can only be:
 - performed offline
 - through human intervention
 - with limited volume coverage
 - time consuming
 - hazardous and expensive
- Down time typically >£5k/day
 - Weather dependent access

Remote CM

- Wide range of technologies under development
- Data transmission system to links with the shore base/control centre.
 - Direct Line of Sight
 - Repeater station
 - Fibre-optic/cable

Beyond UK

- 30 GW of projects planned for German waters
- Horns Rev II, Denmark, 200 MW + similar project, location to be decided.
- Mouth of the Western Scheldt River, Holland, 100 MW
- Ijmuiden, Holland, 100 MW
- Lillgrund Bank, Sweden, 48 MW
- Uttgrunden II, Sweden, 72 MW
- Barsebank, Sweden, 750 MW
- Kish Bank, Ireland 250 MW+
- Cape Wind, USA, 420 MW
- Long Island, USA, 140 MW
- Arklow II, Ireland, 500 MW
- Cape Trafalgar, Spain, 500 MW
- Thornton Bank, Belgium, 200

When the lights go out

Tuesday 10 November 2009
Sao Paluo, Rio de Janiero
17 GW lost, massive outage at hydro plant

14 August 2003

NE USA

Multi GW lost, cascade failure of grid

Failure detection and management

Energy Generation & Supply

- Nil or very limited failure warning
 - No real-time load affect information
 - Expensive
 - Too exciting!
- Vulnerability of DG grid
 - No DG management
 - Hinders Smart Grid

Summary

- Highly accurate weather forecasting for wind energy dispatch prediction
- Data transmission for WT condition management
- Mapping (and monitoring) of sub-sea cables, warnings to mariners
- Grid condition management
- Distributed Generation management

Technology Strategy Board Driving Innovation Knowledge Transfer Network Energy Generation & Supply

Thank you

Chris.Bagley@energyktn.innovateuk.org

www.innovateuk.org/energyktn